RELIABILITY STUDIES ON RC BRIDGE PIERS CONSIDERING ULTIMATE LIMIT STATE

A THESIS

submitted by

ABISHEK A.

for the award of the degree

of

MASTER OF SCIENCE

(by Research)

STRUCTURAL ENGINEERING DIVISION DEPARTMENT OF CIVIL ENGINEERING INDIAN INSTITUTE OF TECHNOLOGY MADRAS CHENNAI-600036 DECEMBER 2018

"You have a right to perform your prescribed duties, but you are not entitled to the fruits of your actions. Never consider yourself to be the cause of the results of your activities, nor be attached to inaction."

-Bhagavad Gita 2.47

ACKNOWLEDGEMENTS

I am thankful to my guide, Prof. B. Nageswara Rao, for his immense support during the research. I would like to thank him for the freedom he gave with relevance to the research. I am grateful to Prof. B. Nageswara Rao and Prof. A. Meher Prasad for permitting me to use the computational resources at Centre for Finite Element Analysis and Design (CFEAD), which provided me comfortable environment for research.

I express my sincere thanks to my General Test Committee (GTC) members, Dr. Vidya Bhushan Maji and Dr. K. V. Nagendra Gopal for their valuable comments and suggestions on my work.

I am further grateful to Prof. Devdas Menon for being a great inspiration. I would like to thank him for his critical review and comments on my work. I express my thanks also to Dr. Rupen Goswami for his remarks on my work.

I would like to show my gratitude to Ms. Shereena O A for helping me technically with basics of HDMR code. Also I am enormously thankful to Mr. Anandaroop Lahiri, Mr. Aparup Biswal, Mr. Najeeb Shariff, Mr. Sagadevan R, Mr. Siva Poornan, and Ms. Gouri Krishna S R for helping me technically and making this work possible.

I would like to thank and remember forever, all my friends who were supportive throughout my stay at IIT Madras. Life would have been tough without their support.

It would be incomplete to not show my sincere gratitude to all the critics, without whose involvement, I would not have learnt to fight against and overcome those hardships by myself.

This work would not have been possible without the immeasurable support of my parents, Mrs. Malliga P and Mr. Asaithambi M, who were patient and tolerant enough to accept my delay in taking over responsibilities.

Finally I would like to thank the one, who is the reason I am here and who gave meaning to my life; The God!

ABSTRACT

Keywords: Structural reliability, High-dimensional model representation, Hammer head pier, Railway Bridge.

Bridge piers are considered key structural elements of a bridge because of the higher stress concentration in them. Reliability studies on single column hammer head piers have been studied extensively for different loading conditions and limit states. However, the same needs to be explored with respect to railway bridges using rational numerical methods. The present study aims to evaluate the safety index of commonly used double column hammer head piers in rail bridges using Monte Carlo simulation by considering uncertainties in demand and resistance.

Variability in demand is limited to live load (variation of rail loads), self-weight of the superstructure and the super-imposed dead loads, wind load and seismic load. Material and geometric parameters have been considered as random variables to include the effect of uncertainties in the sectional resistance of the pier. Variability in characteristic strength of concrete, yield strength of steel, diameter of the pier, effective cover of the pier and cross sectional area of the reinforcement bars are considered in the current study. In order to arrive at more realistic values of reliability, ready mix concrete strength data was collected and the strength model of corresponding concrete is used.

Reliability of the piers are calculated considering axial-flexural and axial-shear interactions. In order to reduce the computational time of simulations using actual model, High-dimensional model representation formulations are used in determining an explicit relationship between the uncertainties considered and capacity of the pier section. Correlations of the random variables up to second order are considered in generating the Response Surface using Lagrange interpolation function. HDMR approximate function is generated only for the capacity model.

Additionally, parametric studies have also been conducted to obtain results of practical significance.

TABLE OF CONTENTS

Title

Page no.

ACKNOWLEDGEMENTS	i
ABSTRACT	ii
LIST OF TABLES	vi
LIST OF FIGURES	viii
ABBREVIATIONS	xi
NOTATIONS	xiii

CHAPTER 1: INTRODUCTION	1
1.1 OVERVIEW	. 1
1.2 REVIEW OF LITERATURE	. 4
1.2.1 Pier failure – overview	. 4
1.2.2 Response models for reliability analysis	7
1.3 OBJECTIVE AND SCOPE	. 8
1.4 METHODOLOGY	8
1.5 ORGANIZATION OF THESIS	9
CHAPTER 2: CAPACITY MODEL	. 11
2.1 INTRODUCTION	. 11
2.2 DESIGN CRITERIA	12
2.3 STATISTICS OF MATERIAL	13
2.3.1 Concrete strength models	13
2.3.2 Ready mix concrete strength model	14
2.3.3 Reinforcement steel strength models	. 16
2.4 STATISTICS OF DIMENSION	16
2.5 STATISTICS OF MODELLING UNCERTAINTY	. 17
2.6 PROBABILISTIC P-M INTERACTION	19
2.6.1 Simulation algorithm	19
2.6.2 Statistics of capacity for different concrete models	. 24

2.6.3 Statistics of capacity for different steel models	26
2.7 PROBABILISTIC SHEAR RESISTANCE	28
2.7.1 Statistics of shear capacity for different concrete models	30
2.7.2 Statistics of shear capacity for steel models	32
2.8 SUMMARY	33
CHAPTER 3: DEMAND MODEL	35
	•••
3.1 INTRODUCTION	35
3.2 DESIGN LOADS	35
3.2.1 Dead load	35
3.2.2 Live load	36
3.2.3 Dynamic effect	37
3.2.4 Longitudinal force	37
3.2.5 Force due to curvature	38
3.2.6 Force due to frictional resistance	38
3.2.7 Wind load	39
3.2.8 Seismic force	39
3.2.9 Force due to water current and buoyancy	40
3.3 STATISTICS OF LOAD COMPONENTS	40
3.3.1 Dead load model	41
3.3.2 Live load model	42
3.3.3 Wind load model	43
3.3.4 Seismic load model	43
3.4 LOAD EFFECT	44
3.4.1 Demand analysis	45
3.4.2 Load combinations	48
3.5 STATISTICS OF DEMAND	49
3.5.1 Simulation for demand model	50
3.5.2 Statistics of load effects	51
3.6 SUMMARY	54
CHAPTER 4: RELIABILITY ANALYSIS	55
4.1 INTRODUCTION	55
4.2 LIMIT STATES	62

4	.2.1	Axial-flexural interaction	62
4	.2.2	Shear limit	63
4.3	FAI	LURE CRITERIA	64
4.4	HD	MR BASED P-M INTERACTION	68
4	.4.1	HDMR – Concept and application	68
4	.4.2	Response Surface function	72
4	.4.3	Validation of HDMR code	74
4	.4.4	Explicit P-M interaction function	77
4	.4.5	Error in HDMR approximate function	78
4.5	COl	NVERGENCE CHECK FOR SIMULATIONS	81
4.6	FAI	LURE STUDY	82
4	.6.1	Effect of statistical variation of materials and loads	83
4	.6.2	Reliability Contour	91
4	.6.3	Parametric Study	97
4.7	SUN	MMARY	100
CH	APT	ER 5: SUMMARY AND CONCLUSIONS	103
5.1	SUN	MMARY	103
5.2	COl	NCLUSIONS	106
5.3	SCO	DPE FOR FUTURE WORK	108
API	PENI	DIX A: Tables	109
REI	FERI	ENCES	121

Kindly send a mail to <u>asaithambi.abishek@gmail.com</u> for complete thesis.